Update Rehabilitation Program and Physical Therapy Of Neonatal Brachial Plexus Palsy (BPP) 

The first known description of neonatal brachial plexus palsy (BPP) dates from 1779 when Smellie reported the case of an infant with bilateral arm weakness that resolved spontaneously within a few days after birth. In the 1870s, Duchenne and Erb described cases of upper trunk nerve injury, attributing the findings to traction on the upper trunk, now called Erb’s palsy (or Duchenne-Erb’s palsy). [1]In 1885, Klumpke described injury to the C8-T1 nerve roots and the nearby stellate ganglion that now bears her name.

Many cases of BPP are transient, with the child recovering full function in the first week of life. A smaller percentage of children continue to have weakness leading to long-term disability from the injury. The mainstay of treatment for these children is physical and/or occupational therapy in concert with a regular home exercise program. A select few patients may benefit from surgical intervention in the early stages to improve innervation of the affected muscles. Others benefit from tendon transfers performed later to improve shoulder and (sometimes) elbow function.

Numerous other nonsurgical treatments, including electrical stimulation and botulinum toxin injections, also may prove effective in the treatment of children with BPP. In view of the variability in presentation, treatment options, and outcome measures, a multidisciplinary approach to the care of the infant with BPP is recommended.

Update Rehabilitation Program and Physical Therapy Of Neonatal Brachial Plexus Palsy (BPP) 

  • The rehabilitation of children with brachial plexus palsy (BPP) must begin in infancy to achieve optimal functional returns. For the first 2 weeks, the child may have some pain in the affected shoulder and limb, either from the injury or from an associated clavicular or humeral fracture. The arm can be fixed across the child’s chest by pinning of his/her clothing to provide more comfort. However, some authors have discouraged this pinning in favor of immediate institution of gentle ROM exercises. Parents should be instructed in techniques for dressing the child to avoid further traction on the arm. Often a wrist extension splint is necessary to maintain proper wrist alignment and reduce the risk of progressive contractures.
  • Therapy is the cornerstone in the management of the symptoms of a child with BPP. The role of the treating physician is to guide the program and make critical decisions regarding the need for further medical or surgical intervention. As the child gets older, bimanual activities (eg, swimming, basketball, wheelbarrow walking, climbing) should be encouraged. A comprehensive therapy program that has been designed and implemented by a pediatric physical therapist is essential for children whose case is being managed conservatively, as well as for children who require surgical intervention.
  • A pediatric physical or occupational therapist’s role is 2-fold. The first responsibility of the therapist is to provide ongoing therapeutic treatment and parental instruction. By the very nature of therapy, the therapist’s second function is to provide precise and ongoing assessment of the infant’s functional status and recovery, to assist the physician in determining future medical and surgical considerations, and to assess the efficacy of these interventions.
  • When dealing with infants and young children, the pediatric therapist should evaluate the child based on normal development and age-appropriate skills. The therapist’s initial evaluation of an infant with BPP should include specific details about passive and active ROM, the strength of each muscle or muscle groups, and the posture of the affected limb compared with the other extremity, as well details regarding sensibility and overall function.
  • Formal goniometry should be employed to measure active and passive ROM. Standardized strength testing, although difficult in young children, is necessary for objective documentation of recovery. Physical therapists at the Hospital for Sick Children of Toronto have devised a simple observation tool that evaluates active joint movement against gravity. Based on observations of movement, a clinical grade is assigned to quantify the patient’s status, and progress can be tracked over time. Comparison of the movement patterns of the affected and unaffected arm also is useful. Testing of sensation, posture, and functional activity is performed through clinical observation.
  • A comprehensive therapy program should consist of ROM exercises, facilitation of active movement, strengthening, promotion of sensory awareness, and provision of instructions for home activities. Overall goals should focus on minimizing bony deformities and joint contractures associated with BPP, while optimizing functional outcomes.
  • Severe contractures should be avoidable with consistent therapeutic exercises, including passive and active stretching, flexibility activities, myofascial release techniques, and joint mobilization.
  • Over time, these contractures can lead to progressive bony deformity and shoulder dislocation. Early and consistent stretching of internal rotators should minimize the risk of this problem. External rotation, performed with the shoulder adducted alongside the chest and with the elbow flexed to 90°, provides maximum stretch of internal rotators (specifically, the subscapularis) and the anterior shoulder capsule. The scapula should be stabilized while stretching shoulder girdle muscles to maintain mobility and preserve some scapulohumeral rhythm. Early development of flexion contractures at the elbow is common and can be exacerbated by radial head dislocation caused by forced supination. Aggressive forearm supination, therefore, should be avoided.
  • Active mobility and strengthening initially are facilitated through age-appropriate developmental activities. As the child gets older, standard strengthening exercises are used and specific functional skills are introduced. Specific muscle groups can be targeted for strengthening through functional movement. Compensatory and substitute movements should be avoided, as they may perpetuate weak muscles and deformity.
  • Static and dynamic splinting of the arm is useful to reduce contractures, prevent further deformity, and in some cases, assist movement. Commonly prescribed splints include resting hand and wrist splints, elbow extension splints, dynamic elbow flexion and supinator splints. Careful selection and timing of splint use is essential to optimization of the desired effect.
  • Taping techniques may be used by the therapist to control scapular instability and hence to promote improved shoulder mobility.
  • Sensory awareness activities are useful for enhancing active motor performance, as well as for minimizing neglect of the affected limb. Use of infant massage and drawing visual attention to the affected arm can be incorporated easily into play and daily activities. Weight-bearing activities with the affected arm in all positions not only provide necessary proprioceptive input but also can contribute to skeletal growth.
  • Instructing parents and family in a home exercise program is instrumental in effective management of BPP cases. A comprehensive program that includes stretching exercises, safe handling and early positioning techniques, developmental and strengthening activities, and sensory awareness should be developed and updated as needed. In older children with persistent disability, the focus on home instruction shifts to independence, with these patients learning self-stretching and strengthening exercises, as well as strategies for achieving specific life skills. The focus of therapy often is directed toward more recreational activities, such as swimming or basketball.

Occupational Therapy

Recreational Therapy

  • Bimanual recreational activities, such as swimming, basketball, wheelbarrow walking, and climbing, should be encouraged.

Medical Issues/Complications

  • Aggressive forearm supination can lead to radial head dislocation. Unlike nursemaid’s elbow, radial head dislocation does not relocate easily in children with brachial plexus palsy (BPP) and can lead to a permanent elbow flexion contracture.
  • A small, but significant, percentage of children mutilate their fingers and hands as toddlers. Parents should be warned of this possibility, and they should take care to avoid cutaneous infection.
  • Without regular stretching, the child with residual weakness from BPP is at risk for progressive contractures, posterior shoulder dislocation, and agnosia of the affected limb.
  • Scoliosis can develop from muscle imbalance and asymmetrical motor patterns.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s